Mechanical peeling of free-standing single-walled carbon-nanotube bundles.
نویسندگان
چکیده
An in situ electron microscopy study is presented of adhesion interactions between single-walled carbon nanotubes (SWNTs) by mechanically peeling thin free-standing SWNT bundles using in situ nanomanipulation techniques inside a high-resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle in a controlled-displacement manner and capture the deformation curvature of the delaminated SWNT bundle during the peeling process. A theoretical model based on nonlinear elastica theory is employed to interpret the measured deformation curvatures of the SWNTs and to quantitatively evaluate the peeling force and the adhesion strength between bundled SWNTs. The estimated adhesion energy per unit length for each pair of neighboring tubes in the peeling interface based on our peeling experiments agrees reasonably well with the theoretical value. This in situ peeling technique provides a potential new method for separating bundled SWNTs without compromising their material properties. The combined peeling experiments and modeling presented in this paper will be very useful to the study of the adhesion interactions between SWNTs and their nonlinear mechanical behaviors in the large-displacement regime.
منابع مشابه
Postbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method
In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...
متن کاملDynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory
This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...
متن کاملThe effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle
In this paper, free and forced vibration of simply-supported Single-walled carbon nanotube is investigated under the moving nanoparticle by considering nonlocal cylindrical shell model. To validate the theoretical results, modal analysis of nanotube is conducted using ANSYS commercial software. Excellent agreement is exhibited between the results of two different methods. Furthermore, the dynam...
متن کاملSingle Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کاملMultifunctional Composites of Ceramics and Single-Walled Carbon Nanotubes
Polycrystalline ceramic/single-walled carbon nanotube (SWNT) composites possess unique grain boundaries, containing 1D tortuous SWNTs bundles that form 2D tangled embedded nets. This unprecedented grain-boundary structure allows tailoring of multifunctional ceramic/SWNTs composites with unique combinations of desirable mechanical (toughness, strength, creep) and transport (electrical, thermal) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2010